US009058119B1

a2z United States Patent (10) Patent No.: US 9,058,119 B1
Ray, III et al. (45) Date of Patent: Jun. 16, 2015
(54) EFFICIENT DATA MIGRATION 2002/0141379 Al* 10/2002 Davarietal. 370/351
2003/0088671 Al* 5/2003 Klinker et al. 709/225
. : . 2005/0163093 Al* 7/2005 Gargetal. 370/342
(75) Inventors: i‘;‘:ﬁf::;‘ ﬁeﬁaﬁgﬁgﬁ }r]lgl;i.oﬁg?“(;i]s); 2006/0085607 AL* 4/2006 Ha_r_%ma 711/161
4 ’ 2007/0006020 ALl* 12007 Fujitaccoecevvvvinveeanenn. 714/6
(Us) 2007/0043874 Al* 2/2007 Nath et al. 709/230
2007/0220071 Al* 9/2007 Anzaietal. 707/204
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US) 2009/0234984 Al* 9/2009 Chaitanya et al. 710/33
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 1019 days. Primary Examiner — Angela Nguyen
(74) Attorney, Agent, or Firm — Cooper Legal Group, LLC
(21) Appl. No.: 12/685,250
. 57 ABSTRACT
(22) Filed: Jan. 11, 2010
One or more techniques and/or systems are disclosed that
(51) Int.ClL provide for improved speed and efficiency when transferring
GOG6F 3/06 (2006.01) data from a source data storage device to a destination data
HO4L 12/00 (2006.01) storage device in a data storage network. A data storage
HO4L 29/08 (2006.01) network is configured such that a source data storage device,
(52) US.CL a destination data storage device and a migration server can
CPC oo, GO6F 3/0647 (2013.01); HO4L 12/00 communicate with each other. Both a source data storage
(2013.01); HO4L 67/148 (2013.01) drive and a destination data storage drive are mapped to the
(58) Field of Classification Search migration server. The migration server identifies controllers
USPC ittt 709/217 coupled to the data storage network for the source and desti-
See application file for complete search history. nation data storage drives. A route of data transfer is mapped
from the source data storage drive to the destination data
(56) References Cited storage drive through the identified controllers, and the datais

U.S. PATENT DOCUMENTS

7,107,421 B2* 9/2006 Kanedaetal. 711/162
8,069,323 B2* 11/2011 Sudoetal. 711/162
100
-

transferred from the source data storage drive to the destina-
tion data storage drive using the mapped route of data transfer.

20 Claims, 10 Drawing Sheets

/132

i 116 '
i 128 '
]
112~ ! \ | 1324
I
] \! N- p- DATA ||
]
~le— MODULE [MODULE {#—»| STORE |- 38‘5555
SSC T 120 124 DEVICE |!
| 1 T
! % 4 i i
__________________________ !
;
' o}
Ic \/ Ye— I ‘I"ng
/3 g
134 =]
P i
130 | !
N Y
]
N- B- DATA || | DESTINATION
MODULE H MODULE (w—» STORE [VOLUME
122 126 DEVICE |!
E 1328

\132

U.S. Patent Jun. 16, 2015 Sheet 1 of 10 US 9,058,119 B1

102\ 132
N
I
112\ | A\ L 132N
T | N- D- DATA |1
I
=llelt4 MODULE [{ MODULE [4—»| STORE [t SOPNCE
o= | ol 1|| 120 || 124 DEVICE |!
| ! !
i 4 | :
103/ L\ __ o ________) :
106 ;
= %%
©: x>
I\ m
134 ©
f11s~ /N i |
I |
4 | ¥ X 130~ | v
:]
= | N- D- DATA |1 | DESTINATION
<« | MODULE H MODULE {4—»| STORE [+
f 1 VOLUME
e | O | 122 128 DEVICE :
|
| i 1328
I i

K132

FIG. 1

US 9,058,119 B1

Sheet 2 of 10

Jun. 16, 2015

U.S. Patent

¢ 'Old

Z82 - 2 10A 052 - L TOA
022 ~ 812~
o= A
| gez | %2 vee |
| ! ! I 1
! | 1 _ i ﬂ
"@ Wﬂ ﬂ @ @ ! ﬁ@ “
“ [_ [
L HE B K
zzz oldgv4 - 5§12
vmu\ _.
oz || 8tz Y3 Ldvay ¥3Ldvay H31dvay
a4 NOT FOVHOLS §S300V___ | | MYOMLIN
557 || 502 -P1e H¥ILSN1D-T0e - 012
¥ || FFHLD
I TOA TVNLYIA
NILSAS ¥OSS300Ud | | HOSSI0Ud
ONLLYYIdO -¥02 -0z
FOVHOLS - 802
AYOWIW - 902 _
IAON - T0Z

IN3MD - 502

N— 9gZ

4(8~

U.S. Patent Jun. 16, 2015 Sheet 3 of 10 US 9,058,119 B1

300\
302
START

Y
304
CONFIGURE NETWORK FOR SOURCE, /
DESTINATION & MIGRATION SERVER
COMMUNICATIONS

CONTROLLERS THAT MANAGE

IDENTIFY SOURCE & DESTINATION / 306
RESPECTIVE DRIVES

308
IDENTIFY DATA TRANSFER ROUTE FROM /
SOURCE DRIVE TO DESTINATION DRIVE

TRANSFER DATA FROM SOURCE DRIVE |~ 310
TO DESTINATION DRIVE OVER PATH(S)

312

FIG. 3

US 9,058,119 B1

Sheet 4 of 10

Jun. 16, 2015

U.S. Patent

r oov

oy
adnN3

1Y SNOISS3S SIADIMS OLNI NOISSIS HAISNVAL

i Inand HIASNYHL NOISSAS | J1YEHO OL

PRI NNY 40 3N3ND HAISNWHL SNNT NOILYNLLS3A
/ / EINEI) JaIAIG 2 A0YNOS 103138
9zv i
8cy - vZy ~ zey - gz
Y
¥AAYTS HAAYIS V1va WILSAS
| NOLLVYOIN OL o NOLLVMOIN OL o FOVHOLS (vnTV)
A3LNISIHd SNN1 SNNT NOLLYNILSAA ONISN SNN1T OL H1vd
HO4 ¥Ny 319vN3 ® I0HNOS LINISTH a3xy1s3adg ANINYILAG
S3A AN / 1474 siy

NOILLYZILIYOIYd AJENL SINOZ MHOAMLAN SHOMLAN

ANY AYIAODSIA HOA S140ddNs WHOMLAN NELINAMO | NI H3AHIS

SNMT HO4 NVOS3H OL TINNVHO NOILYHOIN NOLLVHDIN

UIAANIS S1DFHIA INTITD Jy4Id ALVIHD TIVLSNI TIYLSNI
y
104 _/ /| a0t / 104 /. vov
ON oLv

(Lavis)

cor

US 9,058,119 B1

Sheet 5 of 10

Jun. 16, 2015

U.S. Patent

HIALNISTHd
AAINQ
05 |
|
1
i
|
{
i
|
i
{
1
i
1
1
|
i
NN1-a
256 —"
HATIOHINOD-A
pas =
C—=—1
NOILLYNILS3AQ

d3ddvi

41N0yd
01§

HAHIISNYHL

v.vd
E4%]

145°]

HIANINYF13d
HLVd
905

AHOWIN
NOILVOIN
705

HOLVHOIN - 208

AL

4//floom

//famm

dITI0ULNOD-S
095

334N0Ss

US 9,058,119 B1

Sheet 6 of 10

Jun. 16, 2015

U.S. Patent

HOHI4ASNYHL AN
vYiva N
4% N

H3ddVIN
3LNOY
ols

YT INISTAA /7
IAINA ,
0t e

NNT-
85—

AdITIOHINOD-d
v98

NOILYNILSHA

¥es

919
.v_.wl\

J14gvd
0S8

HIANINYEE13d

Hlvd
a0s

AMOWAN
NOILYYOIN

~. oS

T~o | YOLVHDIW - 205

/l 009

NOT-S N
855

dITTOHLINOD-S
— 095

ze6—~ JOHNOS

US 9,058,119 B1

Sheet 7 of 10

Jun. 16, 2015

U.S. Patent

HOYIISNVHL
viva
2ig

L "Old

d3ddvYIN
3100y
01§

¥IINIST
FARIT
0z5

d 2 d

NNT-a - 85§

H301718

NOISS3S
0zl

Olddv4
0SS

Y

052
m_,m_o_wm%m m_,wo_wwm,_m on_wmww
1 [[1 |
IN3NO NNY - Z2Z 28
WANINYILAA | YIZINVONO
HLVd HAISNVHL
a0% 8L
UIUYANOD | AHOWIW
v.ivd NOILLYHOIN
vzl Yo
HOLVMOIN - Z08
51
A
|
ad 4] <| A4
NNT-S - 955
> 002

U.S. Patent Jun. 16, 2015 Sheet 8 of 10 US 9,058,119 B1

800 \‘

802
START

y

LINK PATH B/W SOURCE DRIVE AND /—304
MIGRATION SERVER

i
LINK PATH B/W DESTINATION DRIVE /306
AND MIGRATION SERVER

808

Y.
DETERMINE DATA TRANSFER ROUTE(S)
B/W SOURCE & DESTINATION DRIVES

810 - IDENTIFY SOURCE
CONTROLLER

812 - IDENTIFY DESTINATION
CONTROLLER

t
|
|
814 - IDENTIFY DATA TRANSFER !
ROUTE(S) BIW CONTROLLERS !
, 816
1
Y /

TRANSFER DATA FROM SOURCE TO
DESTINATION DRIVE

I |

Y
820 END COMPARE TRANSFERRED DATA WITH
DATA ON SOURCE DRIVE

1 I
e j \
““““ 818

FIG. 8

U.S. Patent

900 \

Jun. 16, 2015 Sheet 9 of 10

902
START

Y

US 9,058,119 B1

IDENTIFY PATH(S) BETWEEN PORTS
ON MANAGING CONTROLLERS FOR
SOURCE AND DESTINATION DRIVES

204
/_

Y

CONCURRENTLY TRANSFER SUBSETS
OF DATA OVER PATH(S)

206
/_

Y

MONITOR PORTS IN REAL TIME TO
IDENTIFY CHANGES IN NUMBER

208
/—

DYNAMICALLY ADJUST NUMBER OF
CONCCURRENT DATA SUBSET
TRANSFERS BASED ON PATH NUMBER
CHANGES

/—910

912 Y
N END)

FIG. 9

U.S. Patent Jun. 16, 2015 Sheet 10 of 10 US 9,058,119 B1

1000 —y

COMPUTER READABLE MEDIUM
1008

01011010001010
10101011010101
101101011100...

A 1006

I
i
|
|
[
i

COMPUTER
INSTRUCTIONS

1004

US 9,058,119 B1

1
EFFICIENT DATA MIGRATION

BACKGROUND

Business entities and consumers are storing an ever
increasing amount of digitized data. For example, many com-
mercial entities are in the process of digitizing their business
records and/or other data. Similarly, web based service pro-
viders generally engage in transactions that are primarily
digital in nature. Thus, techniques and mechanisms that
facilitate efficient and cost effective storage of vast amounts
of digital data are being implemented.

New data storage technologies are continuing to be devel-
oped and implemented by both commercial enterprises and
consumers. Often, to help link remote (or even locally dis-
persed) locations that require access to stored data, and/or to
ensure that such data remains available in the event of hard-
ware, software, or even site failures (e.g., power outages,
sabotage, natural disasters), entities have developed clustered
networks that link disparate storage in a network available to
a plurality of clients, for example.

As data storage requirements and/or management needs of
a data management and storage network increase, such as for
an enterprise, for example, components of the network may
be replaced and/or upgraded. For example, an administrator
may wish to replace two storage servers that can each store X
amount of data with a single, more modern storage server that
can store 2X data and has a faster data read time. In this
example, data stored in the two storage servers will need to be
transferred to the single replacement storage server prior to
taking the two original storage servers out of the network.

However, data migration from a source location (e.g., the
two storage servers being replaced) to a destination location
can be complex and take a long-time. Further, access to the
data being migrated is typically unavailable or at least limited
during the transfer. Typically, data is transferred from the
source location to the destination location on a block-level.
That is, data is copied byte-by-byte, in memory blocks, from
the source to the destination. The type of data, file-type, or
way it is stored does not affect this type of data migration, as
the data is merely copied in block form and written to the
destination in block form. As an example, the source location
may comprise virtual volumes (e.g., disparate memory blocks
onphysical drives that are emulated as a single volume of data
to the storage network), which further comprises virtual
drives (or pseudo-drives) (e.g., disparate memory blocks in
the volume that are emulated as a single drive, such as a
hard-drive, to the storage system). One example of a virtual
drive is a Logical Unit Number (LUN) drive, which is iden-
tified by numbers that represent network memory locations of
the data stored by the LUN.

Often, when replacing or upgrading a data storage unit, the
replacement unit is different than those that are being
replaced, and are therefore said to be “heterogeneous” (e.g.,
not the same). Copying data between storage volumes resid-
ing on heterogeneous (e.g., different types and/or manufac-
turers) storage systems is common when storage systems are
being replaced and data is migrated to the replacements from
those volumes being replaced. In an enterprise data storage
and management environment the data migration typically
involves large-scale block-level migration, which can be per-
formed by connecting drive locations and transferring the
data from the source to the destination over the connection,
such as a storage network fabric (e.g., network connections).

Currently, techniques and/or systems utilize software and
hardware that identifies the source and the destination, iden-
tifies a link between the two, and then semi-automatically

30

40

45

2

transfers the data on a block-level. However, currently, the
transfers do notidentify a fastest path for data transfer, merely
an available one, which can dramatically increase transfer
times (e.g., by two to three time). Further, the current tech-
niques and/or systems may not provide for automated error
checking, where errors may occur during heterogeneous data
transfers, for example. Additionally, if a data transfer error
does occur during the migration, currently, the entire batch of
data would need to be retransferred, which can lead to
increased migration times.

SUMMARY

Aspects of the present disclosure propose to identify
desired (e.g., optimal) data transfer paths, provide for error
checking, and transfer data in subsets, and thus provide for
improved migration speed and efficiency.

This disclosure relates to techniques and systems that pro-
vide for improved speed and efficiency when transferring data
from a source data storage device to a destination data storage
device in a data storage network. In one embodiment, a data
storage network is configured in such a way so that a migra-
tion server (e.g., a component linked to the network that
facilitates data migration) can communicate with both a
source data storage device, such as a data storage server (e.g.,
having physical disk, comprising virtual volumes), and a
destination data storage device. A data storage drive (e.g., a
virtual drive, such as a Logical Unit Number (LUN)) from the
source data storage device and a data storage drive from the
destination data storage device can be mapped to the migra-
tion server, for example, by presenting the appropriate net-
work location identification.

In this embodiment, controllers that are coupled to the data
storage network are identified, one respectively for the source
and destination data storage drives, which manage the respec-
tive drives, using the migration server. Further, a plurality of
ports for the respective controllers can be identified, if avail-
able. This determines a priority communications path for the
source and destination data storage drives, for example, to the
migration server over the network. A route of data transfer is
determined (e.g., mapped) from the source data storage drive
to the destination data storage drive through the identified
controllers, and through respective plurality of ports (if avail-
able), and the data is transferred from the source data storage
drive to the destination data storage drive using the preferred
route of data transfer, such as one or more that provide an
efficient (e.g., fastest) communication path.

In this way, for example, the data transfer utilizes the
preferred route identified, where the route utilizes the con-
trollers (e.g., and associated ports) that directly manage the
source and destination drives. Clustered storage networks
typically have a plurality of drives that can be accessed by the
plurality of controllers from other nodes, for example. How-
ever, if a data transfer route is mapped from the controllers
that directly manage the respective drives, data transfer speed
can be improved.

To the accomplishment of the foregoing and related ends,
the following description and annexed drawings set forth
certain illustrative aspects and implementations. These are
indicative of but a few of the various ways in which one or
more aspects may be employed. Other aspects, advantages,
and novel features of the disclosure will become apparent
from the following detailed description when considered in
conjunction with the annexed drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a component block diagram illustrating an
example clustered network in accordance with one or more of
the provisions set forth herein.

US 9,058,119 B1

3

FIG. 2 is a component block diagram illustrating an
example data storage system in accordance with one or more
of the provisions set forth herein.

FIG. 3 is a flow chart diagram illustrating an example
method for providing improved speed when transferring data
from a source data storage device to a destination data storage
device in accordance with one or more of the provisions set
forth herein.

FIG. 4 is a flow chart diagram illustrating an example
method for data migration in accordance with one or more of
the provisions set forth herein.

FIG. 5 is a component block diagram illustrating an
example system configured to provide improved speed when
transferring data from a source data storage device to a des-
tination data storage device in accordance with one or more of
the provisions set forth herein.

FIG. 6 is component block diagram illustrating an example
system configured to facilitate data migration in accordance
with one or more of the provisions set forth herein.

FIG. 7 is component block diagram illustrating an example
system configured to facilitate data migration in accordance
with one or more of the provisions set forth herein.

FIG. 8 is a flow chart diagram illustrating an example
method for providing improved speed and error detection
when transferring data from a source data storage device to a
destination data storage device in accordance with one or
more of the provisions set forth herein.

FIG. 9 is a flow chart diagram illustrating an example
method for providing improved speed and error detection
when transferring data from a source data storage device to a
destination data storage device in accordance with one or
more of the provisions set forth herein.

FIG. 10 is an example of a computer readable medium in
accordance with one or more of the provisions set forth
herein.

DETAILED DESCRIPTION

Some examples of the claimed subject matter are now
described with reference to the drawings, where like refer-
ence numerals are used to refer to like elements throughout.
In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the claimed subject matter. It may
be evident, however, that the claimed subject matter may be
practiced without these specific details. Nothing in this
detailed description is admitted as prior art.

A data migration involving large-scale block-level migra-
tion of logical unit number (LUN) drives, for example, can be
cumbersome and prone to operator error. The migration is
typically reliant on migration engineers to prepare systems
and perform the steps of the migration. To provide for effi-
cient resource utilization and improved data migration time,
the present disclosure presents one or more semi-automated,
improved methods and/or systems for transferring data from
a source volume to a destination volume, utilizing a migration
appliance.

To provide a context for an embodiment of how data migra-
tion may be implemented, FIG. 1 illustrates a clustered net-
work environment 100, for example, whereon source and
destination volumes may reside, and FIG. 2 illustrates an
embodiment of a data storage system that may be imple-
mented to store and manage data in this clustered network
environment. It will be appreciated that where the same or
similar components, elements, features, items, modules, etc.
are illustrated in later figures but were previously discussed
with regard to prior figures, that a similar (e.g., redundant)

10

20

25

30

35

40

45

50

55

60

65

4

discussion of the same may be omitted when describing the
subsequent figures (e.g., for purposes of simplicity and ease
of understanding).

FIG.1is a block diagram illustrating an example clustered
network environment 100 that may implement some embodi-
ments of the techniques and/or systems described herein. The
example environment 100 comprises data storage systems
102 and 104 that are coupled over a cluster fabric 106, such as
a computing network embodied as a private Infiniband or
Fibre Channel (FC) network facilitating communication
between the storage systems 102 and 104 (and one or more
modules, component, etc. therein, such as, nodes 116 and
118, for example). It will be appreciated that while two data
storage systems 102 and 104 and two nodes 116 and 118 are
illustrated in FIG. 1, that any suitable number of such com-
ponents is contemplated. Similarly, unless specifically pro-
vided otherwise herein, the same is true for other modules,
elements, features, items, etc. referenced herein and/or illus-
trated in the accompanying drawings. That is, a particular
number of components, modules, elements, features, items,
etc. disclosed herein is not meant to be interpreted in a limit-
ing manner.

It will be further appreciated that clustered networks are
not limited to any particular geographic areas and can be
clustered locally and/or remotely. Thus, in one embodiment a
clustered network can be distributed over a plurality of stor-
age systems and/or nodes located in a plurality of geographic
locations; while in another embodiment a clustered network
can include data storage systems (e.g., 102, 104) residing in a
same geographic location (e.g., in a single onsite rack of data
storage devices).

In the illustrated example, one or more clients 108, 110
which may comprise, for example, personal computers (PCs),
computing devices used for storage (e.g., storage servers),
and other computers or peripheral devices (e.g., printers), are
coupled to the respective data storage systems 102, 104 by
storage network connections 112, 114. Network connection
may comprise a local area network (LAN) or wide area net-
work (WAN), for example, that utilizes Network Attached
Storage (NAS) protocols, such as a Common Internet File
System (CIFS) protocol or a Network File System (NFS)
protocol to exchange data packets. [llustratively, the clients
108, 110 may be general-purpose computers running appli-
cations, and may interact with the data storage systems 102,
104 using a client/server model for exchange of information.
That is, the client may request data from the data storage
system, and the data storage system may return results of the
request to the client via one or more network connections 112,
114.

The nodes 116, 118 on clustered data storage systems 102,
104 can comprise network or host nodes that are intercon-
nected as a cluster to provide data storage and management
services, such as to an enterprise having remote locations, for
example. Such a node in a data storage and management
network cluster environment 100 can be a device attached to
the network as a connection point, redistribution point or
communication endpoint, for example. A node may be
capable of sending, receiving, and/or forwarding information
over a network communications channel, and could comprise
any device that meets any or all of these criteria. One example
of a node may be a data storage and management server
attached to a network, where the server can comprise a gen-
eral purpose computer or a computing device particularly
configured to operate as a server in a data storage and man-
agement system.

As illustrated in the exemplary environment 100, nodes
116, 118 can comprise various functional components that

US 9,058,119 B1

5

coordinate to provide distributed storage architecture for the
cluster. For example, the nodes can comprise a network mod-
ule 120,122 (e.g., N-Module, or N-Blade) and a data module
124, 126 (e.g., D-Module, or D-Blade). Network modules
120, 122 can be configured to allow the nodes 116, 118 to
connect with clients 108, 110 over the network connections
112,114, for example, allowing the clients 108, 110 to access
data stored in the distributed storage system. Further, the
network modules 120, 122 can provide connections with one
or more other components through the cluster fabric 106. For
example, in FIG. 1, a first network module 120 of first node
116 can access a second data storage device 130 by sending a
request through a second data module 126 of a second node
118.

Data modules 124, 126 can be configured to connect one or
more data storage devices 128, 130, such as disks or arrays of
disks, flash memory, or some other form of data storage, to the
nodes 116, 118. The nodes 116, 118 can be interconnected by
the cluster fabric 106, for example, allowing respective nodes
in the cluster to access data on data storage devices 128, 130
connected to different nodes in the cluster. Often, data mod-
ules 124,126 communicate with the data storage devices 128,
130 according to a storage area network (SAN) protocol, such
as Small Computer System Interface (SCSI) or Fiber Channel
Protocol (FCP), for example. Thus, as seen from an operating
system on a node 116, 118, the data storage devices 128,130
can appear as locally attached to the operating system. In this
manner, different nodes 116, 118, etc. may access data blocks
through the operating system, rather than expressly request-
ing abstract files.

It should be appreciated that, while the example embodi-
ment 100 illustrates an equal number of N and D modules,
other embodiments may comprise a differing number of these
modules. For example, there may be a plurality of N and/or D
modules interconnected in a cluster that does not have a
one-to-one correspondence between the N and D modules.
That is, different nodes can have a different number of N and
D modules, and the same node can have a different number of
N modules than D modules.

Further, a client 108, 110 can be networked with the nodes
116, 118 in the cluster, over the networking connections 112,
114. As an example, respective clients 108, 110 that are
networked to a cluster may request services (e.g., exchanging
of'information in the form of data packets) of anode 116, 118
in the cluster, and the node 116, 118 can return results of the
requested services to the clients 108, 110. In one embodi-
ment, the clients 108, 110 can exchange information with the
network modules 120, 122 residing in the nodes (e.g., net-
work hosts) 116, 118 in the data storage systems 102, 104.

In one embodiment, the data storage devices 128, 130
comprise volumes 132, which is an implementation of stor-
age of information onto disk drives or disk arrays as a file-
system for data, for example. Volumes can span a portionof a
disk, a collection of disks, or portions of disks, for example,
and typically define an overall logical arrangement of file
storage on disk space in the storage system. In one embodi-
ment a volume can comprise stored data as one or more files
that reside in a hierarchical directory structure within the
volume.

Volumes are typically configured in formats that may be
associated with particular storage systems, and respective
volume formats typically comprise features that provide
functionality to the volumes, such as providing an ability for
volumes to form clusters. For example, where a first storage
system may utilize a first format for their volumes, a second
storage system may utilize a second format for their volumes.

15

25

40

45

50

55

60

6

In the example environment 100, the clients 108, 110 can
utilize the data storage systems 102, 104 to store and retrieve
data from the volumes 132. In this embodiment, for example,
the client 108 can send data packets to the N-module 120 in
the node 116 within data storage system 102. The node 116
can forward the data to the data storage device 128 using the
D-module 124, where the data storage device 128 comprises
volume 132A. In this way, in this example, the client can
access the storage volume 132A, to store and/or retrieve data,
using the data storage system 102 connected by the network
connection 112. Further, in this embodiment, the client 110
can exchange data with the N-module 122 in the host 118
within the data storage system 104 (e.g., which may be
remote from the data storage system 102). The host 118 can
forward the data to the data storage device 130 using the
D-module 126, thereby accessing volume 1328 associated
with the data storage device 130.

In one embodiment, as illustrated by the example environ-
ment 100 of FIG. 1, the data storage device 128 may comprise
a source volume 132A (e.g., a source providing a source of
data to be migrated), and the data storage device 130 may
comprise a destination volume 1328 (e.g., providing a desti-
nation for the migrated data). In this embodiment, for
example, the data storage device 128 may be a storage server
or storage system that is being replaced by anewer model, and
data stored on the source volume 132 A can be migrated (e.g.,
copied or transferred) to the destination volume 132B. As
provided herein, efficient data migration can be facilitated by
implementing a data migration component 134, such as an
intermediate server, for example, as well as concurrently
transferring different slices of the data, if possible.

FIG. 2 is an illustrative example of a data storage system
200, providing further detail of an embodiment of compo-
nents that may implement one or more of the techniques
and/or systems described herein. The example data storage
system 200 comprises a node 202 (e.g., hostnodes 116,118 in
FIG. 1), and a data storage device 234 (e.g., data storage
devices 128, 130 in FIG. 1). The node 202 may be a general
purpose computer, for example, or some other computing
device particularly configured to operate as a storage server. A
client 205 (e.g., 108, 110 in FIG. 1) can be connected to the
node 202 over a network 216, for example, to provides access
to files stored on the data storage device 234.

The data storage device 234 can comprise mass storage
devices, such as disks 224, 226, 228 of a disk array 218, 220,
222. Tt will be appreciated that the techniques and systems,
described herein, are not limited by the example embodiment.
For example, disks 224, 226, 228 may comprise any type of
mass storage devices, including but not limited to magnetic
disk drives, flash memory, and any other similar media
adapted to store information, including data (D) and/or parity
(P) information.

The node 202 comprises one or more processors 204, a
memory 206, a network adapter 210, a cluster access adapter
212, and a storage adapter 214 interconnected by a system bus
236. The storage system 200 also includes an operating sys-
tem 208 installed in the memory 206 of the node 202 that can,
for example, implement a Redundant Array of Independent
(or Inexpensive) Disks (RAID) optimization technique to
optimize a reconstruction process of data of a failed disk in
array.

The operating system 208 can also manage communica-
tions for the data storage system, and communications
between other data storage systems that may be in a clustered
network, such as attached to a cluster fabric 215 (e.g., 106 in
FIG. 1). Thus, the host 202 can to respond to client requests to
manage data on the data storage device 200 (e.g., or additional

US 9,058,119 B1

7

clustered devices) in accordance with these client requests.
The operating system 208 can often establish one or more file
systems on the data storage system 200, where a file system
can include software code and data structures that implement
a persistent hierarchical namespace of files and directories,
for example. As an example, when a new data storage device
(not shown) is added to a clustered network system, the oper-
ating system 208 is informed where, in an existing directory
tree, new files associated with the new data storage device are
to be stored. This is often referred to as “mounting” a file
system.

In the example data storage system 200, memory 206 can
include storage locations that are addressable by the proces-
sors 204 and adapters 210, 212, 214 for storing related soft-
ware program code and data structures. The processors 204
and adapters 210, 212, 214 may, for example, include pro-
cessing elements and/or logic circuitry configured to execute
the software code and manipulate the data structures. The
operating system 208, portions of which are typically resident
in the memory 206 and executed by the processing elements,
functionally organizes the storage system by, among other
things, invoking storage operations in support of a file service
implemented by the storage system. It will be apparent to
those skilled in the art that other processing and memory
mechanisms, including various computer readable media,
may be used for storing and/or executing program instruc-
tions pertaining to the techniques described herein. For
example, the operating system can also utilize one or more
control files (not shown) to maintain relationships and data
schedules between a source volume, a migration appliance,
and a destination volume during data migration as discussed
below.

The network adapter 210 includes the mechanical, electri-
cal and signaling circuitry needed to connect the data storage
system 200 to a client 205 over a computer network 216,
which may comprise, among other things, a point-to-point
connection or a shared medium, such as a local area network.
The client 205 (e.g., 108, 110 of FIG. 1) may be a general-
purpose computer configured to execute applications. As
described above, the client 205 may interact with the data
storage system 200 in accordance with a client/host model of
information delivery.

The storage adapter 214 cooperates with the operating
system 208 executing on the host 202 to access information
requested by the client 205. The information may be stored on
any type of attached array of writeable media such as mag-
netic disk drives, flash memory, and/or any other similar
media adapted to store information. In the example data stor-
age system 200, the information can be stored in data blocks
on the disks 224, 226, 228. The storage adapter 214 can
includes input/output (I/0) interface circuitry that couples to
the disks over an I/O interconnect arrangement, such as a
storage area network (SAN) protocol (e.g., Small Computer
System Interface (SCSI), iSCSI, hyperSCSI, Fiber Channel
Protocol (FCP)). The information is retrieved by the storage
adapter 214 and, if necessary, processed by the one or more
processors 204 (or the storage adapter 214 itself) prior to
being forwarded over the system bus 236 to the network
adapter 210 (and/or the cluster access adapter 212 if sending
to another node in the cluster) where the information is for-
matted into a data packet and returned to the client 205 over
the network connection 216 (and/or returned to another node
attached to the cluster over the cluster fabric 215).

In one embodiment, storage of information on arrays 218,
220, 222 can be implemented as one or more storage “vol-
umes” 230, 232 that are comprised of a cluster of disks 224,
226, 228 defining an overall logical arrangement of disk

40

45

50

55

8

space. The disks 224, 226, 228 that comprise one or more
volumes are typically organized as one or more groups of
RAIDs. As an example, volume 230 comprises an aggregate
of disk arrays 218 and 220, which comprise the cluster of
disks 224 and 226.

In one embodiment, to facilitate access to disks 224, 226,
228, the operating system 208 may implement a file system
(e.g., write anywhere file system) that logically organizes the
information as a hierarchical structure of directories and files
on the disks. In this embodiment, respective files may be
implemented as a set of disk blocks configured to store infor-
mation, such as data (D) and/or parity (P), whereas the direc-
tory may be implemented as a specially formatted file in
which other files and directories are stored.

Whatever the underlying physical configuration within this
data storage system 200, data can be stored as files within
physical and/or virtual volumes, which can be associated with
respective volume identifiers, such as file system identifiers
(FSIDs), which can be 32-bits in length in one example.

A physical volume, which may also be referred to as a
“traditional volume” in some contexts, corresponds to at least
a portion of physical memory whose address, addressable
space, location, etc. doesn’t change, such as at least some of
one or more data storage devices 234 (e.g., a Redundant Array
of'Independent (or Inexpensive) Disks (RAID system)). Typi-
cally the location of the physical volume doesn’t change in
that the (range of) address(es) used to access it generally
remains constant.

A virtual volume, in contrast, is stored over an aggregate of
disparate portions of different physical storage devices. The
virtual volume may be a collection of different available
portions of different physical memory locations, such as
some available space from each of the disks 224, 226, 228. It
will be appreciated that since a virtual volume is not “tied” to
any one particular storage device, a virtual volume can be said
to include a layer of abstraction or virtualization, which
allows it to be resized and/or flexible in some regards.

Further, a virtual volume can include one or more logical
unit numbers (LUNs) 238, directories 236, qtrees 235, and
files 240. Among other things, these features, but more par-
ticularly LUNS, allow the disparate memory locations within
which data is stored to be identified, for example, and grouped
as data storage unit. As such, the LUNs 238, may be charac-
terized as constituting a virtual disk or drive upon which data
within the virtual volume is stored within the aggregate. For
example, LUNs are often referred to as virtual hard drives,
such that they emulate a hard drive from a general purpose
computer, while they actually comprise data blocks stored in
various parts of a volume.

In one embodiment, one or more data storage devices 234
can have one or more physical ports, wherein each physical
port can be assigned a target address (e.g., SCSI target
address). To represent each volume stored on a data storage
device, a target address on the data storage device can be used
to identity one or more LUNs 238. Thus, for example, when
the host 202 connects to a volume 224, 226 through the
storage adapter 214, a connection between the host 202 and
the one or more [LUNs 238 underlying the volume is created.

In one embodiment, respective target addresses can iden-
tify multiple LUNSs, such that a target address can represent
multiple volumes. The /O interface, which can be imple-
mented as circuitry and/or software in the storage adapter 214
or as executable code residing in memory 206 and executed
by the processors 204, for example, can connect to volume
224 by using one or more addresses that identify the LUNs
238.

US 9,058,119 B1

9

In one aspect, an administrator of a data storage and man-
agement system, such as illustrated by the exemplary envi-
ronment 100, may wish to add a data storage device, such as
130 in FIG. 1, for example, in order to upgrade the system,
and/or replace an older device. In this aspect, in one embodi-
ment, block-level data migration can be performed from the
old device (e.g., source volume) to the new device (e.g.,
destination volume). In one embodiment of data migration,
one or more volumes can act as a source volume and one or
more volumes can act as a destination volume, wherein data
at the source volume is replicated (e.g., full duplication, copy
or transfer) at the destination volume.

FIG. 3 is a flow diagram illustrating an example method
300 for transferring data from a source data storage device to
a destination data storage device in a data storage network,
where the data may be transferred at an enhanced rate relative
to known techniques. It will be appreciated that while this
method 300 (as well as any other methods described herein)
is illustrated and described as a series of acts or events, the
present disclosure is not necessarily limited by the illustrated
ordering of such acts or events. For example, some acts may
occur in different orders and/or concurrently with other acts
or events apart from those illustrated and/or described herein.
In addition, not all illustrated acts may be required and other
non-illustrated acts may be inserted. Further, one or more of
the acts depicted herein may be carried out in one or more
separate acts or phases.

The exemplary method 300 begins at 302 and involves
configuring a data storage network so that a source data
storage device (e.g., 128 of FIG. 1), a destination data storage
device (e.g., 130 of FIG. 1) and a migration server (e.g., 134
of FIG. 1), can communicate with one another, at 304. In one
embodiment, a migration server may be a general purpose
computer that comprises an operating system with one or
more applications for facilitating the migration of the data
from the source to the destination running on top of the
operating system.

The migration server can be configured for communica-
tions, for example, by being physically plugged into a fabric,
such as the cluster fabric 106 (e.g., the migration server 134 of
FIG. 1 can be plugged into a storage area network SAN)) of
FIG. 1, where the migration server is visible to the network
(e.g., the source and destination devices can link to the migra-
tion server to communicate). As an example, the migration
server may become visible to the storage network when a
fabric controller detects it being plugged into the fabric, and
determines its identity by information transmitted from the
migration server at the time it is plugged in. Further, in one
embodiment, the cluster network can be zoned (e.g.,ina SAN
configuration) where zoning can isolate connected nodes
(and the migration server) so that they can communicate with
each other. As an example, the numbers that identify the
network adapters in the migration server and the source and
destination storage devices (e.g., as in 210 of FIG. 2), such as
host bus adapter world wide port numbers (HBA WWPN) can
be zoned together in the storage network so that they can
communicate.

In one embodiment, after configuring the data storage
device at 304, for example, a data storage drive from the
source data storage device can be mapped to the migration
server, and a data storage drive can be mapped from the
destination data storage device to the migration server. In one
embodiment, a data storage drive may comprise a LUN (e.g.,
emulated as a virtual hard drive). As described above, LUNs
can identify disparate memory locations comprising data that
is logically aggregated (e.g., belongs in a same data set, such
as a data that is associated with a database). As such, the

25

40

45

10

LUNs can identify a virtual data storage unit (emulated as a
drive) within a volume (e.g., a subset of a virtual volume).

In this embodiment, an administrator, for example, can
map a first LUN (or a first set of a plurality of LUNS) from the
source drive to the migration server, and a second LUN (or a
second set of a plurality of LUNS) from the destination drive
to the migration server. In one embodiment, mapping drives
can comprise presenting the drive (or plurality of drives, such
as LUNSs) to a host bus adapter (HBA), such as a network
adapter 210 from FIG. 2, for example, by presenting the drive
number (e.g., LUN). In this way, in this example, the migra-
tion server can identify and locate the drive (e.g., LUN). For
example, the migration server can identify LUNs by looking
ata combination of their LUN number (LUN ID), LUN serial
numbers, and various other storage system identifiers (e.g.,
storage make, model, revision, which world-wide port name
and number (wwpn and wwnn) for a given LUN.

At 306 in the example method 300, a controller coupled to
the data storage network that manages the source data storage
drive and a controller that manages the destination data stor-
age drive are identified using the migration server. In one
example, these controllers are identified in a native mode or
without the use of third party assistance. That is, the data
storage network controller that manages the source data stor-
age drive is identified natively, for example, by running a set
of instructions or tasks using native code (e.g., native to the
machine or system), contrasted with running an emulation,
such as by using a third-party system or software to accom-
plish the instructions or tasks. Accordingly, the identification
is performed without external support (e.g., by running a
third-party path identification software program). For
example, one or more low level Small Computer System
Interface (SCSI) inquiries can be made natively to the data
storage drive (and/or other components) and the response(s)
thereto can be examined. Similarly, the data storage network
controller that manages the destination data storage drive is
identified natively (e.g., without using third party path iden-
tification software). It will be appreciated that in known tech-
niques, the services of one or more third party service pro-
viders have to be employed to make any such identifications.
Accordingly, utilizing one or more of the techniques and/or
systems provided herein allow data migration to be per-
formed by a single/stand-alone entity, which may translate
into significant savings because the services and/or resources
(e.g., man-hours) of multiple parties need not be consumed,
rather just that of a lone entity. Moreover, while identifying
controllers natively may require multiple SCSI inquiries, for
example, to be made, whereas significantly fewer, if any, of
such inquiries may need to be made if a third party were
consulted, the savings achievable by allowing a single entity
to identify the controllers can still significantly offset the cost
of such inquiries, at least because third party service provid-
ers may charge an engagement fee, among other things, for
their services and such fees may be substantial. Further, the
two controllers may not be mapped to each other, but merely
to the migration server component.

In one embodiment, for example, a controller that manages
the data storage drive can be an adapter (e.g., network inter-
face card (NIC), or a host bus adapter (HBA)) that connects
the node comprising the drive to other nodes, and/or other
components, in a network. Further, in this embodiment,
respective controllers may comprise a plurality of ports, such
that a plurality of communications paths may be directed to or
from the controller using the plurality of ports. For example,
controllers may comprise eight or sixteen ports, each of
which may be utilized as efficient communication paths (e.g.,
fast data transfer paths).

US 9,058,119 B1

11

For example, as illustrated in the example embodiment of
FIG. 2, the cluster access adapter 212 connects the node 202
to the cluster fabric 215, for example, of the clustered data
storage and management network. In this example, the LUN
238 isresident on the data storage device 234, which connects
to and is managed by the node 202, and its components.
Therefore, in this example the controller, such as the cluster
access adapter 212, has a preferred path (e.g., fastest for data
transfer/communications) to the LUN 238; whereas paths
from the LUN 238 to controllers from other nodes in the
clustered network are longer (e.g., therefore take a longer
time to access and/or retrieve data from the LUN 238). Fur-
ther, in this example, the cluster access adapter 212 may
comprise eight (or more or fewer) ports, any one or more of
which may provide an efficient (e.g., fast) path for commu-
nications.

At 308 in the example method 300, one or more routes of
data transfer are determined, passing through the migration
server, from the source data storage drive (e.g., a LUN on the
source volume, on the storage device to be replaced) to the
destination data storage drive (e.g., a LUN on the destination
volume, on the new storage device) through the identified
controllers (e.g., the controllers managing the drives, which
are therefore fastest for the drives), and using the one or more
ports for the respective controllers. In this embodiment, deter-
mining the route(s) of data transfer can provide one or more
efficient priority communications paths for the source and
destination data storage drives, for example, as the controllers
(e.g., and associated ports) that manage the data storage
drives (e.g., LUNS) are typically fastest for the drives (e.g.,
provide a faster data path for communications, often due to
proximity and/or connectivity).

In one embodiment, a plurality of source data storage
drives can be mapped to a plurality of destination data storage
drives. For example, an administrator may select fifty LUNs
to be mapped from the source drive to fifty available LUNs in
the destination drive, which can comprise a transfer session
(e.g., a unit of data transfer that can be completed prior to
beginning another session). In this example, for each of the
fifty LUNs, one or more efficient data communications paths
are chosen utilizing the controller with the ‘fastest path’to the
LUN, and the associated ports. In one embodiment, path
selection can be done twice for the respective transfers, once
for source LUN, once to the destination LUN.

In one embodiment, determining a route between drives
can comprise identifying a desired route between the source
and destination controllers, where an administrator of the data
migration, for example, will often desire a shortest route to
facilitate enhanced transfer speed. For example, the source
and destination controllers can be attached (e.g., physically
connected/plugged-in via a hard wire from a port on the
adapter to the network fabric, such as a switch, router, or some
component specifically designed to connect components to
the network) to the storage network, and an administrator can
identify the network path through the storage fabric/network
(e.g.,aSAN built as a ‘fabric’), for example, between the two
adapters. In this embodiment, for example, the data transfer
from the source drive to the destination drive will utilize a
shortest, and/or a quickest, path.

At 310, after one or more efficient priority communication
paths are determined, the data can be transferred from the
source data storage drive to the destination data storage drive
concurrently using two or more efficient data communica-
tions paths, if two or more paths are available. For example, a
transfer session can comprise data transfer between a plural-
ity of source and destination drives (e.g., LUNs) and/or a
single source and destination drive where the data can be

30

35

40

45

12

broken up into different pieces or slices that can be transferred
concurrently. In this example, an administrator, or an auto-
mated function, can initiate the transfer session, where the
session begins by transferring data from a first source drive to
a first destination drive listed in the transfer session. Further,
data from a second source drive can be transferred to a second
destination drive substantially concurrently where the storage
network and source and destination storage devices have
appropriate bandwidth to accommodate the multiple concur-
rent transfers. Similarly, multiple (different) slices of data
from a source drive can be concurrently transferred to a des-
tination drive where a plurality of data communications paths
have been identified, such as using a plurality of ports on
identified controllers. It will be appreciated that this concur-
rent data transfer can also be adjusted in real time or on the fly
by monitoring the utilization of the storage ports and either
increasing or decreasing the number of concurrent data trans-
fers based upon their available capacity to transfer data. For
example, ports can continually (or at predetermined intervals)
be monitored (e.g., tested) to determine one or more of their
performance characteristics (e.g., stability, data rate, etc.) and
thus be designated as usable or not. For example, a usable or
“open” port may be one that is suitable in that it meets pre-
defined criteria that facilitate data transfer at a predefined rate.
Moreover, characteristics of the slices of data can likewise be
adjusted in real time to facilitate faster overall data transfer.
For example, data slices can be made larger where under-
utilized ports are identified (e.g., one or more ports return
characteristic values indicating that the ports have the band-
width or can otherwise accommodate more data), whereas the
number (or respective sizes) of data slices can be reduced on
ports which have a high degree of utilization (e.g., one or
more ports return characteristic values indicating that the
ports do not have available bandwidth or can not otherwise
accommodate (more) data). The number (or respective sizes)
of slices active can be adjusted in real time to more fully
utilize the particular data paths that are available at any
moment. Further, where different available data paths have
different characteristics, different slices having different
respective characteristics can be transferred concurrently on
the different paths. For example, a larger number of slices (or
size of respective slices) can be prepared and transferred
where an under-utilized port is identified and a smaller num-
ber of slices (or size of respective slices) can be concurrently
prepared and transferred through a port with a high level of
utilization at substantially the same point in time. In this
manner, efficient data transfer may be achieved because the
amount of data that is being transferred at any instant is
generally the largest sum total of data that can be transferred
given the available resources and/or infrastructure.

Having transferred the data from the source drive to the
destination drive, the example method 300 ends at 312.

FIG. 4 is a flow diagram illustrating an example embodi-
ment 400 of an implementation of one or more ofthe methods
described herein. The example embodiment 400 begins at
402 when a migration server is installed on a data storage
network, such as the clustered network environment 100 of
FIG. 1, at 404. In one embodiment, the migration server can
be a general purpose computer, or it can be a special purpose
computing device configured for migrating data, which facili-
tates the migration of data from source volume to a destina-
tion volume.

The migration server can be physically connected to the
storage network (e.g., the storage fabric 106 of FIG. 1), for
example, by connecting a hard wire from a storage adapter in
the migration server to a network component (e.g., a switch)
attached to the storage fabric. As an example, the storage

US 9,058,119 B1

13

network may comprise a Fibre Channel switched fabric
topology (FC-SW), where components are connected to each
other through one or more switches. A plurality of switches in
a fabric can form a clustered network, with components/
devices connected within the cluster. Further, as an example,
a connection can comprise a Fibre-Channel host bus adapter
(HBA) or iSCSI adapter to connect to the storage network.

At406, a migration client is installed on the network. As an
example, a migration client can be a general purpose com-
puter on which resides an operating system and one or more
applications that allow an administrator of the data migration
to interact with the migration process (e.g., view information
using a user interface (UI), enter commands, etc.), for
example, by sending commands to the migration server. In
one embodiment, the client computer can be attached to the
network using an Ethernet connection to a local area network
(LAN), for example, which forms a portion of the clustered
network (e.g., a LAN can be created for a series of nodes
located in a same area, which can be attached to the cluster
fabric to form a larger clustered environment with other
LANs comprising nodes in other locations). It will be appre-
ciated that the migration server and migration client can be
attached to the network (e.g., through an attached Ethernet
network) at locations remotely from each other, or at a same
location in the network.

In one embodiment, a client computer attached to the Eth-
ernet network can be used to map the source data storage drive
and the destination data storage drive visible to the migration
server, which is attached to the storage network. Further, the
client computer can be used to request information from the
migration server about the one or more data storage drives
(e.g., LUNSs), which are located on the source and destination
volumes, for example. Additionally, the client computer can
beused to map the route of data transfer, for example, through
the controllers identified as managing the source and desti-
nation drives.

At 408, in the example embodiment 400, Fibre Channel
(FC) access zones are created. As described above, zoning of
the network can be performed so that the migration server,
source storage devices, and destination storage devices can
communicate with each other. As an example, storage area
networks (SAN) typically utilize reliable and fault tolerant
storage, mitigating a single point failure, by having multiple
paths from host to storage. In this example, where a plurality
of hosts (nodes) may comprise different types (e.g., hetero-
geneous), and comprise different operating systems, zoning
allows an administrator to limit communications between
network components and devices by zoning the devices and
paths, often to mitigate interference, for data security pur-
poses, and/or to simplify management.

In one embodiment, zones can be created by placing physi-
cal ports on a switch into a zone, and attaching the desired
devices to that switch. In another embodiment, zones can be
created by utilizing a World Wide Port Number or Name
(WWPN) for a device’s port, and restricting specific switches
or ports from seeing a particular port. In this way, for
example, the migration server, and source and destination
storage devices can be placed in the same zone to mitigate
interference from other network activity, and to simplify
management of the data migration.

At 410, a determination is made as to whether the storage
arrays that comprise the one or more source and destination
drives support asynchronous LUN access (ALUA). If so,
ALUA can be enabled at 412 for the LUNs involved in the
migration which were presented to the migration server.
ALUA is an industry-wide standard defined in SCSI Primary
Commands (SPC) 3 and 4 (SPC-3 and SPC-4) documents

20

25

30

40

45

50

60

14

drafted by a Technical Committee of the InterNational Com-
mittee on Information Technology Standards (INCITS).
ALUA is a multipathing technology for asymmetrical net-
work storage arrays, where, if the storage array supports
ALUA, path configuration by the host is mitigated. An asym-
metrical storage array provides different levels of access per
port, such as in the clustered network described in FIG. 1. As
an example, an asymmetrical storage array with two control-
lers can have LUN paths to a first controller port as active and
optimized, while having LUN paths to a second controller
port as active and non-optimized. In this example, utilizing
ALUA, the host node can recognize a fastest path to the first
controller port from the LUN, thereby utilizing it as a primary
path.

After 412, one or more source LUNSs and destination LUNs
are presented to the migration server. For example, using the
client computer, the migration administrator can identify
which LUNs on the source volume are to be transferred to the
destination volume, and then identify which destination
LUNs will be used for the transferred data. These LUNSs, a set
from the source and an equivalent set of LUNs from the
destination, can be made visible (e.g., mapped) to the migra-
tion server, and are identifiable on the migration server by
various unique attributes (e.g., comprising the adapter num-
ber, port number, volume number, LUN ID, and LUN serial
number) on the migration server. As an example, the storage
administrator can map fifty LUNs from the source volume to
the migration server, and fifty LUNs from the destinations
server to the migration server. In this way, in this example, the
migration server knows which LUNSs are involved in the data
transfer.

If ALUA is not supported at 410, the client directs the
migration server to rescan for LUNs at 416 for discovery and
prioritization of the LUNs in the data migration. In one
embodiment, an application running on the migration client
can automatically call to the migration server to perform the
LUN discovery and prioritization process. In another
embodiment, an administrator may use the migration client to
make a call to the migration server to perform the LUN
discovery and prioritization process.

In one embodiment, rescanning for discovery and prioriti-
zation of the LUNs can comprise sending one or more queries
from the migration server to a data storage drive (e.g., one of
the LUNSs involved in the data migration) over a plurality of
communications paths, to identify the controllers that man-
age the LUNs. For example, the migration server can query a
source LUN for path priority, where there may be eight paths
to the LUN from the migration server through the clustered
network (e.g., there may be more than one controller that
links to the LUN, and or more than one port per controller). In
this example, one of the controllers manages the LUN
directly, as described above, and the managing controller
(e.g., the controller that “owns” the LUN) can be identified. In
another embodiment, a time for returning responses from the
queries may be determined, and a path having a desired (e.g.,
fastest) response time can be identified as the one having the
managing controller. Further, in this embodiment, the number
of ports that are available for LUN data transfer can be iden-
tified, such as those that are active and usable to a desired
degree (e.g., exhibit desired data transfer characteristics, have
adequate available capacity, etc.).

In this example, the migration server can query the respec-
tive LUNs that were presented to the server at 414 (e.g., fifty
source LUNSs and fifty destination LUN5) to identify the path
priority for the respective LUNs, where a desired path (e.g.,
anoptimal path having a fastest communications time) for the
respective LUNs can be determined by using storage system

US 9,058,119 B1

15

data. Further, in one embodiment, the migration server dis-
covery and prioritization process can comprise sending que-
ries to the LUNSs to identify a size of the respective LUNs
along with identifying their locations. In another embodi-
ment, the system can support more than just ALUA for path
selection, such as Redundant Disk Array Controller (RDAC),
native path selection, etc.

In this embodiment, a list of the LUN’s and the correspond-
ing information (e.g., path priority, size and location) can be
presented back to the migration client. At 420, the migration
client can be used to select a source LUN from which data will
be migrated, and a corresponding destination LUN to which
data will be migrated, in order to map a route of data transfer
(or a plurality of routes of data transfer using multiple ports on
respective controllers) from the source data storage drive
(source LUN) to the destination data storage drive (destina-
tion LUN). In one embodiment, the migration client may
utilize an application that automatically (e.g., programmati-
cally) selects source and destination data storage drive for
mapping a route. In another embodiment, an administrator
may select the source and destination data storage drives,
such as from a list provided by the migration server.

In one embodiment, once the source and destination data
storage drives are selected, the migration server can automati-
cally (e.g., programmatically) provide a preferred route of
data transfer (e.g., or a plurality of preferred routes of data
transfer that meet a predefined transfer speed criteria) using
the identified controllers for the source data storage drive
(e.g., LUN) and the destination data storage drive, for
example, from storage system data. In one embodiment, a
data transfer session can be automatically saved to memory
residing in the migration server after a map ofthe route of data
transfer is identified, for example, where a data transfer ses-
sion can comprise one route of data transfer between LUNSs or
routes of data transfers for a plurality of paired LUNs. It will
be appreciated that automatically performing a function or
task can refer, for example, to a system component and/or
computer program that is configured to perform or undertake
tasks without additional input from an administrator or user.
For example, an action can be initiated automatically based
upon the occurrence of some non-user initiated triggering
event(s), such as passage of a (predetermined) period of time,
establishment of a particular configuration (e.g., connection
of source and destination drives), etc. As another example,
automatic can mean that once a task or function is put in
motion (started) the task or function is completed without
additional input and/or interaction from an outside source,
such as a user.

At 422 of the example method 400, once the one or more
transfer sessions have been created, the respective transfer
sessions are divided into subsets (slices) of the transfer ses-
sion, where a transfer session can be divided into two or more
slices. For example, a transfer session may comprise ten
gigabytes of data that is to be migrated from the source drive
to the destination drive. In this example, the transfer session
may be divided into five, two gigabyte slices (or any other
sized subset). In one embodiment, the client computer
attached to the data storage network can be used to define the
subset of the data contents of the source data storage drive, for
example, using an application residing on the client, or by an
administrator selecting subset sizes and/or number per ses-
sion. Moreover, the size and/or other characteristics of the
slices can be adjusted on the fly based on how usable, for
example, one or more communication ports are determined to
be. For example, if one port is found to be under-utilized to a
great degree, then a relatively larger number of slices (and/or
slices having relatively larger respective sizes) can be gener-

10

15

20

25

30

35

40

45

50

55

60

65

16

ated and allocated to that port, while a relatively smaller
number of slices (and/or slices having relatively smaller
respective sizes) can be generated and allocated to another
port that is found to be open to lesser degree (e.g., utilized to
a greater degree). These different slices can then be trans-
ferred concurrently using the different respective ports to
increase the overall efficiency of the transfer session.

At 424, the one or more transfer sessions are put into a
queue. In one embodiment, where the transfer sessions (e.g.,
the information necessary to migrate data from a source LUN
to a destination LUN, such as locations, controller identifica-
tions, and priority paths) have been saved to the migration
server’s memory, the migration serve may create a queue
comprising the respective transfer sessions, for example,
based on size, first-in-first-out, or some other criteria. In one
embodiment, a plurality of queues may be created in prepa-
ration for the data transfer at some later time, for example, or
for concurrent data transfers over a plurality of preferred
paths.

At 426, a queue, comprising one or more transfer session,
is run. In one embodiment, the running of the queue can be
initiated from the migration client by an application, or by an
administrator. In another embodiment, queue may be initiated
from the migration server once the queue is created. Initiating
the queue comprises initiating a first transfer session in the
queue, which begins a transfer of data (e.g. copying the data)
from the source data storage drive to the destination data
storage drive from the first transfer session in the queue.

Once a queue is initiated to run, the respective transfer
sessions in the queue are run. In one embodiment, a first data
transfer session from the queue is completed prior to initiat-
ing a second data transfer session from the queue. That is, the
transfer sessions in the queue are run in sequence. Alterna-
tively, transfer sessions may be run concurrently, for example,
where a level of concurrency in the queue can be configurable
using an automated process, and/or using input from a client.
In this embodiment, as an example, a plurality of preferred
data paths may be utilized to parallelize the data transfer, such
as by using multiple ports on the respective controllers. In
another embodiment, initiating the transfer sessions in the
queue may be influenced by other parameters, such as net-
work bandwidth, resource availability, and/or administrator
preferences, for example.

In one embodiment, the migration server memory can be
used to transfer the data from the source data storage drive to
the destination data storage drive. In this embodiment, the
first subset of the data contents (e.g., slice of the transfer
session) of the source drive can be copied to the migration
server memory. Subsequently, the first subset of the data
contents of the source data storage drive can be copied from
the migration server memory to the destination data storage
drive. Further, in this embodiment, once the first subset of the
data contents of the source drive is copied from the memory
to the destination drive, a second subset of the data contents of
the source drive can be copied from the source drive to the
migration server memory. In another embodiment, the data
may be copied directly from the source drive to the destina-
tion drive, using the mapped data transfer routes between the
drives.

Transferring data from a source drive to a destination drive
can be performed on a block-level. That is, data is copied byte
by byte from the source drive to the destination drive, at the
memory block-level (e.g., data is stored in blocks of memory
identified by memory addresses on the drives). In one
embodiment, transferring the data from the source data stor-
age drive to the destination data storage drive can comprise
transferring a first subset of (slice) data contents of the source

US 9,058,119 B1

17

data storage drive from the source data storage drive to the
destination data storage drive prior to transferring a second
subset of the data contents of the source data storage drive
from the source data storage drive to destination data storage
drive. That is, merely one slice of the transfer session, com-
prising a particular amount of data blocks, is copied prior to
another slice of the transfer session being copied. In this way,
for example, if a data copy error occurs during the transfer,
merely one slice of data may need to be recopied instead of an
entire transfer session worth of data. In this example, when a
copy error occurs, loss of valuable time and resources can be
mitigated when less data transfer is lost and thus has to be
recopied.

At 428 in the example method 400, to determine if copy
errors are present, data on the destination drive, which was
copied from the source drive, can be compared with the data
on the source drive, which was copied to the destination
storage drive. That is, once the data is copied to the destina-
tion drive it can be compared with the original data located on
the source drive. In this way, for example, if the comparison
reveals differences in the two sets of data, a copy error may
have occurred during the transfer. In one embodiment, a veri-
fication queue may be used, for example, where verification
jobs are run from a front of the queue in and added to a back
of the queue as copying is performed.

In one embodiment, at least a portion of the data from the
source drive can be transferred to migration server memory,
and a same portion of the data from the destination data
storage drive can be transferred to migration server memory,
then the data in the migration server memory from the source
drive can be compared with the data in the migration server
memory from the destination storage drive to determine if
copy errors are present. That is, the data transferred from the
source drive to the destination drive can be compared in the
migration server memory, by sending portions of the trans-
ferred data to the migration server memory.

In one embodiment, the data can be compared after the data
contents of the source drive (e.g., all of the data in the transfer
session, or the queue, or the LUN) are copied to the destina-
tion data storage drive. In another embodiment, the data can
be compared after a subset of the data contents of the source
data storage drive (e.g., a slice of the transfer session) is
copied to the destination data storage drive. In yet another
embodiment, the data can be compared during the transfer-
ring of the data contents of the source data storage drive to the
destination data storage drive.

Having transferred the data from the source drive to the
destination drive, and checked the data for copy errors, the
example embodiment 400 ends at 430.

A system may be devised that provides for improved speed
when transferring data from a source data storage device to a
destination data storage device in a data storage network, as
illustrated by the component block diagram of an example
system 500, in FIG. 5. In the example system 500, a migration
component 502 is operably coupled 562 (e.g., by plugging a
hard wire into a switch in the network fabric, such as the
cluster fabric 550) with the data storage network (not illus-
trated) so it can communicate with the source data storage
device 552 and destination data storage device 554 over the
data storage network. For example, by connecting to the
network, the migration component 502 can use the cluster
network fabric 550 for facilitating transfer of data from the
source data storage device 552 to the destination data storage
device 554.

In the example system 500, the migration component 502
comprises migration memory 504 that stores at least a portion
of the data that is transferred from the source data storage

10

15

20

25

30

35

40

45

50

55

60

65

18

device 552 to the destination data storage device 554. For
example, during data migration data can be transferred from
a source LUN 556 to the migration memory 504, and then
transferred from the migration memory 504 to the destination
LUN 558. As another example, after data is migrated from the
source LUN 556 to the destination LUN 558 a copy of the
data that was transferred can be sent to the migration memory
504 from the source LUN 556 and from the destination LUN
558 to the migration memory 504, so that the two sets of data
can be compared for data copy errors.

Further, the migration component 502 comprises a priority
communications path determination component 506 that
natively (e.g., without emulation support from a third-party
program or system) identifies controllers, such as 560 and
564, coupled to the data storage network that manage the
source and destination data storage drives 556 and 558
respectively. In one example, the priority communications
path determination component 506 is self-sufficient in iden-
tifying the controllers. That is, the priority communications
path determination component 506 natively identifies the
controllers on its own, without emulation support from a third
party program and/or system. Further, the source and desti-
nation data storage drives may be mapped to the migration
component, but not to each other. For example, where the
source and destination data storage drives are mapped to the
migration component, but not to each other. For example, a
pseudo-drive (e.g., a virtual storage unit that comprise dis-
parate memory blocks emulated as a single memory drive),
such as a LUN, is managed directly by a controller associated
with the data storage device (e.g., 552) which comprises the
storage volume that comprises the pseudo drive.

Further, in this example, in a clustered network storage
system, the various pseudo-drives can be accessed using con-
trollers (e.g., 560, 564) on other data storage devices attached
to the network. In this embodiment, the priority communica-
tions path determination component 506, for example, can
identify the controller (e.g., and associated ports (not shown))
that directly manages the respective pseudo-drives from the
other controllers that may merely have access to a pseudo-
drive.

In one embodiment the exemplary system may comprise a
data storage drive presenting component 570 that presents
data storage drives (e.g., 556) from the source data storage
device 552 and data storage drives (e.g., 558) from the desti-
nation data storage device 554 to the migration component
502 so that appropriate data transfer locations can be identi-
fied by the migration component 502. For example, in order
for the migration component 502 to be able to facilitate a
transfer of source data from the source LUN 556 to the des-
tination LUN 558 the data storage drive presenting compo-
nent 570 can present the drive locations (e.g., memory loca-
tions in the clustered network and/or identities (e.g., unique
number identifications associated with the drives)) to the
migration component 502. In this embodiment, the data stor-
age drive presenting component 570 can be operably coupled
with the migration component 502, and in another embodi-
ment, can be operably coupled 562 with the cluster fabric 550
of' the clustered storage network.

In the example system 500, a data transfer mapping com-
ponent 510 determines one or more routes of data transfer
(efficient priority communications paths) from the source
data storage drive 556 to the destination data storage drive
558 through the identified controllers, using one or more ports
on the respective controllers, such as the source drive control-
ler 560 and the destination drive controller 564, which were
identified by the priority communications path determination
component 506. The migration component 502 can use one or

US 9,058,119 B1

19

more of the mapped routes of data transfer to facilitate trans-
fer of data from the source data storage device 556 to the
destination data storage device 558, for example, which are
desired (e.g., optimal) paths for improved transfer speed. In
this example system 500, the data transfer mapping compo-
nent 510 is operably coupled with the migration component
502 and, for example, can also be operably coupled 562 with
the cluster fabric 550 to determine a plurality of data paths.

In one embodiment the system may comprise a data trans-
ferring component 512 operably coupled with the migration
component 502 and configured to initiate concurrent trans-
ferring of the data from the source data storage drive 556 to
the destination data storage drive 558 using the migration
component 502 over two or more efficient priority commu-
nications paths, if two or more paths are available. In one
embodiment, the data transferring component 512 can signal
the migration component 502 to begin transferring the data
using one or more of the preferred routes of data transfer
identified by the route mapper 510. For example, the contents
of the source LUN 556 can be transferred via the source
controller 560, through the storage fabric 550, to the destina-
tion LUN 558, through the destination controller 564, at the
initiation of the data transfer component 512. Further, in one
embodiment, the data can be divided into subsets, and the
subsets can be concurrently transferred from the source to the
destination drives (e.g., 556, 558) using a plurality of paths
that utilize a plurality of ports on the respective controllers
(e.g., 560, 564).

FIG. 6 is one example embodiment 600 of a system con-
figured to facilitate enhanced data transfer as provided herein.
In this embodiment 600, one or more of the components
discussed with regard to FIG. 5 are again presented, although
other embodiments are possible and contemplated. In the
illustrated example, the data storage drive presenting compo-
nent 570, the route of data transfer mapping component 510,
and the data transferring component 512 reside on a client
computing device 616, such as a general purpose computer.
As one example, the client 616 may merely implement a user
interface that accesses these components, such that the instan-
tiation of the component can be present elsewhere (e.g., the
migration server, and/or the storage device) and the client 616
utilizes their functionality.

In this embodiment, the client computer 616 is coupled
with the migration component 502 using an Ethernet connec-
tion to a LAN 650 utilized by one of the data storage nodes
making up the clustered network. In this way, for example, the
client 616 can be attached at any location (e.g., respective
nodes may be located remotely from each other in the net-
work), while the migration component 502 can be attached at
another location (e.g., remotely from the client 616). Further,
in this embodiment, the client 616 can provide an interface to
the migration component 502, which may allow an adminis-
trator, for example, to manage queues, transfer sessions,
server configurations, etc. It will be appreciated that a plural-
ity of client computers (e.g., 616) can be connected with the
migration component (e.g., 502) in such a way as to provide
a plurality of data transfer sessions in parallel, for example.

FIG. 7 is another example embodiment 700 of a system
configured to facilitate enhanced data transfer as provided
herein. As with FIG. 6, in this embodiment 700, one or more
of the components discussed with regard to FIG. 5 are again
presented, although other embodiments are possible and con-
templated. A source LUN 556 and a destination LUN 558 are
attached to the network over the storage network 550 (e.g., at
respective source and destination nodes), the migration com-
ponent 502 (e.g., a special purpose migration server) is
attached to the storage network 550, and a client computer

10

15

20

25

30

35

40

45

50

55

60

65

20

616 is attached to an Ethernet network 650 (e.g., by connect-
ing to a LAN using an Ethernet connection, not connected to
the storage network). In this embodiment 700, as an example,
the respective LUNs 556 and 558 are comprised of data
blocks 754 and 756. In this example, contents of the source
data blocks 754 will be transferred to the destination data
blocks 756.

In this embodiment, when the route of data transfer map-
ping component 510 maps the one or more routes of data
transfer from the source data storage drive 556 to the desti-
nation data storage drive 558 a data transfer session is created.
In one embodiment, the transfer session comprises identified
storage locations of data (e.g., 754) on the source data storage
drive 556 to be copied to the destination storage locations
(e.g., 756) on the destination data storage drive 558. As an
example, upon mapping the route, a transfer session can be
created and stored in the migration memory 504.

Further, in this example embodiment 700, the migration
server 502 comprises a transfer session organization compo-
nent 718, coupled with the migration memory 504, which
stores transfer sessions in the migration memory 504. As an
example, when a transfer session is created, as described
above, it can be stored to the migration memory 504, and as
more and more transfer sessions are created by mapping
respective source LUNSs (e.g., 556) to destination LUNs (e.g.,
558) the transfer sessions can be stored to the migration
memory 504.

In one embodiment, the respective transfer session 750 can
be organized in a run queue 722 by the transfer session orga-
nization component 718, for example, such that as a new
session is created it can be placed at in the run queue. In one
embodiment, the transfer session organization component
718 may organize the sessions 750 based on some specified
criteria (e.g., specified by an administrator and/or an auto-
mated application process, such as by importance of data),
such that the sessions are prioritized for being run based on
the criteria. In this embodiment, the data transferring compo-
nent 512 can initiate transferring of the data from the source
data storage drive (e.g., 556) to the destination data storage
drive (e.g., 558) from the one or more transfer sessions 750 in
run queue 722. In one embodiment, after the data has been
transferred (e.g., copied) it is moved to a ‘verify’ queue and
verified.

In the example embodiment 700, a transfer session slicing
component 720 divides the transfer session 750 into one or
more transfer session subsets 752 (slices), where the slices
752 are portions of the identified storage locations of data
(e.g., 754) on the source data storage drive (e.g., 556) to be
copied to the corresponding destination storage locations
(e.g., 756) on the destination data storage drive (e.g., 558).
For example, a transfer session may comprise ten gigabytes of
data to be migrated from the source to the destination drives.
In this example, the session slicer 720 can divide the transfer
session into five slices of two gigabytes each. In this way, as
an example, merely two gigabytes of block-level data are
transferred from the source to the destination at a time, and if
the transfer is interrupted for any reason (e.g., power failure,
copy error, etc.) a retransfer (e.g., restarting the transfer that
was interrupted) comprises merely two gigabytes instead of
the ten of the entire session. In this way, in this example,
retranstfers can save time and computing resources.

In one embodiment, migration component 502 copies a
first subset of data (e.g., slice, such as 752) from the source
data storage drive (e.g., 556) to the destination data storage
drive (e.g., 558) prior to transferring a second subset of the
data from the source data storage drive to destination data
storage drive. In one embodiment of data transfer, the migra-

US 9,058,119 B1

21

tion component 502 can copy a first slice 752 from the source
data storage drive 556 to migration memory 504, and copy the
first slice 752 from the migration server memory 504 to the
destination data storage drive 558 prior to transferring a sec-
ond slice 752. In this way, for example, respective slices 752
of a transfer session 750 can be migrated one at a time in case
a transfer error occurs, as described above. Further, after a
final slice of a session is migrated, a next session transfer can
be run from the queue 722. In another embodiment, the one or
more slices can be transferred concurrently, for example, such
that two or more of the plurality of data slices can be copied
at a same time. In this embodiment, a level of concurrency,
such as how many slices are transferred at a same time, can be
adjusted.

In the example embodiment 700, the migration component
502 comprises a data comparison component 724 that com-
pares the data on the destination data storage drive (e.g., 756
ot'558) that was copied from the source data storage drive 556
with the data on the source data storage drive e.g., 754 0o 556)
that was copied to the destination storage drive to determine
if copy errors are present. For example, the data that was
copied to the destination drive still resides in the memory
blocks (e.g., 754) of the source LUN 556, this data can be
compared with the data located in the memory blocks 756 of
the destination LUN 558, which was just copied there, to
determine if it is unchanged (e.g., same in source and in
destination).

In one embodiment, the data comparison component 724
can copy data (e.g., residing in memory blocks 754) from the
source data storage drive (e.g., 556) to migration memory
504, transfer a same portion of the data (e.g., residing in
memory blocks 756) from the destination data storage drive
(e.g., 558) to migration memory 504, and then compare the
data in the migration memory 504 from the source data stor-
age drive 556 with the data in the migration memory 504 from
the destination storage drive 558 to determine if copy errors
are present. For example, the migration memory collects cop-
ies of the data that was transferred from both the source and
destinations drives to determine if they are unchanged.

An alternate method may be devised for providing
improved speed and error detection when transferring data
from a source data storage device to a destination data storage
device in a data storage network. FIG. 8 is a flow diagram of
an example of this alternate method 800. The example
method 800 begins at 802 and involves creating a communi-
cations path between a source data storage drive residingon a
source data storage device and a data migration component on
a data storage network, by linking the two over a communi-
cations network, at 804. Here, the source data storage drive
comprises stored data to be transferred, for example, to a
destination storage drive on the communications network,
such as a data storage and management clustered network.

At 806, a communications path is created between a des-
tination data storage drive residing on a destination data stor-
age device and the data migration component on the data
storage network, by linking the two over the network, where
the destination data storage drive comprises data storage loca-
tions for the data to be transferred to from the source drive.
Therefore, as an example, the source drive is linked with the
migration component and the destination drive is linked with
the migration component, so that the three components can
communicate with each other over the network. In one
embodiment, the components can be zoned in a storage area
network (SAN), so that merely the three components can
communicate without interference from other components in
the network.

10

15

20

25

30

35

40

45

50

55

60

65

22

At 808, one or more preferred data transfer routes are
determined between the source data storage drive and the
destination data storage drive using the data migration com-
ponent, where both a source controller and a destination
controller are identified natively (e.g., without use of a third-
party application for path identification), where the source
and destination controllers directly manage the source and
destination drives respectively, at 810 and 812. Further, in this
embodiment, a plurality of ports may be identified on respec-
tive controllers, thereby allowing a plurality of preferred data
transfer routes to be identified. As an example, the source
controller is coupled with the source drive and the destination
controller is coupled with the destination drive where com-
municating with respective drives comprises communicating
through the respective controllers. At 814, one or more pre-
ferred data transfer routes can be identified as priority com-
munications paths for data transfer (e.g., between one or more
ports on the source controller and one or more ports on the
destination controller in the data storage network) between
the source and destination data storage drive controller,
through the migration component. In this way, for example,
the data transfer route(s) can comprise a preferred (e.g., fast-
est and/or optimized) route(s) for transferring data between
the respective drives. Having identified the preferred data
transfer route(s), the example method 800 ends at 820.

Alternately, in one embodiment, at 816, data can be trans-
ferred from the source data storage drive to the destination
data storage drive using the preferred data transfer route(s).
For example, where the one or more preferred data transfer
routes comprise a link between one or more ports on the
identified source controller and one or more ports on the
destination controller, respective data transfer routes com-
prise an optimal route of data transfer for the migration for
speed and/or efficiency (e.g., data loss). In one embodiment,
the data is transferred byte by byte ata block-level, where a set
of'source memory blocks is read by a storage drive head, sent
to a transient memory location, such as in the migration
server, and then the data from the transient memory location
is sent to a corresponding set of memory blocks in the desti-
nation drive, where storage drive heads write the data.

In this embodiment, at 818, the data transferred to the
destination data storage drive can be compared with the data
on the source data storage drive to determine if the data is
unchanged. For example, data that was copied to the memory
blocks in the destination drive can be compared with the data
in the source memory blocks from which it came, to deter-
mine if any changes to the data occurred during the transfer.
In this way, for example, copy errors can be detected, such as
where a same data unit from the source and destination drives
is different (e.g., a value is different, such one or more of the
binary values for an eight-bit block has changed). Having
compared the data, this embodiment of the example method
800 ends at 820.

Another alternate method may be devised for providing
improved speed and error detection when transferring data
from a source data storage device to a destination data storage
device in a data storage network. FIG. 9 is a flow diagram of
an example of this alternate method 900. The example
method 900 begins at 902 and involves identifying at 904 one
or more efficient priority communications paths in real time
by finding one or more open ports on a controller that man-
ages a destination storage drive on the destination data stor-
age device, at 904. In this embodiment, in order to be selected
as an efficient priority communications path, the one or more
open ports meet one or more predefined criteria that facilitate
data transfer at a predefined rate, for example.

US 9,058,119 B1

23

In one embodiment, the predefined criteria for the port may
include whether or not the port resides on a controller that
directly manages the storage drive for the data storage device.
That is, the controller comprising the port is on the same
device that houses the data storage comprising the drive, such
as a LUN, for example. Criteria may also comprise, for
example, operator preference, connection speed, utilization
percentage (e.g., business or level of activity on the port),
stability, etc. Further, the criteria can comprise whether the
port is configured to provide data transfer at preferred speeds
(e.g., those speeds preferred by an administrator or user to
complete data transfers within a selected time). Additionally,
the criteria may comprise whether the port is active as a data
transfer path for other transfers and/or the degree to which the
port is utilized by other systems besides the migration sys-
tems. For example, asymmetrical storage arrays can provide
different levels of performance per port, where a first control-
ler port may be active to a first degree, and a second controller
port may be active to a second degree as a data path for LUN
transfer.

At 906 in the example method 900, subsets of the data are
concurrently transferred from the source data storage drive to
the destination data drive using the one or more efficient
priority communications paths. That is, for example, where a
plurality of efficient communications paths have been iden-
tified, such as by utilizing a plurality of ports on the respective
controllers for the source and destination drives, a plurality of
data transfers can be performed relatively concurrently (e.g.,
in parallel). In one embodiment, the data transfer (e.g., a
transfer session comprising data from one LUN) can be
divided into subsets. In this embodiment, the subsets can be
concurrently transferred using a plurality of efficient data
paths if they are available. Thus, the number of active slices
and transfers per path can be adjusted based on the number
and utilization of available paths,

At 908, the ports on the controller are monitored in real
time (e.g., as the data transfer occurs) to determine if the
number of efficient priority communications paths changes.
For example, another port may become available (e.g., or one
in use may become unavailable) for data transfer on the des-
tination and/or the source controllers based upon some pre-
defined criteria. Similarly, the degree to which a port is uti-
lized can likewise be monitored. For example, the available
bandwidth of an open port may double, such that the corre-
sponding path can accommodate an increased throughput,
and this additional capacity can be detected and utilized by
increasing (e.g., doubling) the number of active slices being
transferred. In one embodiment, an administrator may peri-
odically manually search for efficient data paths between the
drives, for example, by periodically using mapping path ele-
ments (e.g., connections to the network, ports, etc.) between
source and destination controllers.

In another embodiment, the monitoring may be performed
automatically, such as programmatically, by using a monitor-
ing program to search for efficient paths between the source
and destination drives. As an example, if the network com-
ponents that comprise a data path, such as the controllers,
ports, and drives (e.g., LUNs) are enabled for asynchronous
LUN access (ALUA), the automated program for searching
can utilize ALUA to identify the preferred (e.g., optimized
and/or fastest) paths between the controllers.

At 910 in the example method 900, the number of concur-
rent data subset transfers are dynamically adjusted “on the
fly”” when the number of efficient priority communications
paths changes. That is, for example, as a data transfer session
isunderway, such as a plurality of subsets of the session being
transferred over a plurality of efficient data paths concur-

20

30

35

40

45

24

rently, the number of paths used for the transfer session can be
adjusted to account for the changes identified by the moni-
toring. In one embodiment, the number of concurrent data
subset transfers can be increased if the change in the number
of available efficient priority communications paths
increases, or the number concurrent data subset transfers can
be reduced if the number of available efficient priority com-
munications paths decreases. Similarly, a larger (or smaller)
data slice can be transferred over an existing (or new) path
where the bandwidth of a corresponding port is found have
increased (or decreased). In this manner, a data transfer ses-
sion can be conducted relatively efficiently because the sum
total of data being transferred at any point in time generally
corresponds to the upper tolerances/bandwidth of the infra-
structure/system. Additionally, the number of active sessions
can be “throttled” by the user and/or automatically (effec-
tively limiting the load put on the source and destination
storage drives and/or devices) to (pre)determined levels so
that the transfers do not have an adverse effect on other
systems accessing the same source and/or destination storage
drives and/or devices.

It will be appreciated that processes, architectures and/or
procedures described herein can be implemented in hard-
ware, firmware and/or software. It will also be appreciated
that the provisions set forth herein may apply to any type of
special-purpose computer (e.g., file host, storage server and/
or storage serving appliance) and/or general-purpose com-
puter, including a standalone computer or portion thereof,
embodied as or including a storage system. Moreover, the
teachings herein can be configured to a variety of storage
system architectures including, but not limited to, a network-
attached storage environment and/or a storage area network
and disk assembly directly attached to a client or host com-
puter. Storage system should therefore be taken broadly to
include such arrangements in addition to any subsystems
configured to perform a storage function and associated with
other equipment or systems.

In some embodiments, methods described and/or illus-
trated in this disclosure may be realized in whole or in part on
computer-readable media. Computer readable media can
include processor-executable instructions configured to
implement one or more of the methods presented herein, and
may include any mechanism for storing this data that can be
thereafter read by a computer system. Examples of computer
readable media include hard drives (e.g., accessible via net-
work attached storage (NAS)), Storage Area Networks
(SAN), volatile and non-volatile memory, such as read-only
memory (ROM), random-access memory (RAM), EEPROM
and/or flash memory, CD-ROMs, CD-Rs, CD-RWs, DVDs,
cassettes, magnetic tape, magnetic disk storage, optical or
non-optical data storage devices and/or any other medium
which can be used to store data. Computer readable media
may also comprise communication media, which typically
embodies computer readable instructions or other data in a
modulated data signal such as a carrier wave or other transport
mechanism (e.g., that has one or more of its characteristics set
or changed in such a manner as to encode information in the
signal). The computer readable medium can also be distrib-
uted (e.g., using a switching fabric, such as used in computer
farms) over a network-coupled computer system so that com-
puter readable code is stored and executed in a distributed
fashion.

Another embodiment (which may include one or more of
the variations described above) involves a computer-readable
medium comprising processor-executable instructions con-
figured to apply one or more of the techniques presented
herein. An exemplary computer-readable medium that may

US 9,058,119 B1

25

be devised in these ways is illustrated in FIG. 10, where the
implementation 1000 comprises a computer-readable
medium 1008 (e.g., a CD-R, DVD-R, or a platter of a hard
disk drive), on which is encoded computer-readable data
1006. This computer-readable data 1006 in turn comprises a
set of computer instructions 1004 configured to operate
according to the principles set forth herein. In one such
embodiment, the processor-executable instructions 1004 may
be configured to perform a method 1002, such as the method
300 of FIG. 3 or method 800 of FIG. 8, for example. Many
such computer-readable media may be devised by those of
ordinary skill in the art that are configured to operate in
accordance with the techniques presented herein.

Moreover, unless specified to the contrary, the term “or” is
intended to mean an inclusive “or” rather than an exclusive
“or”, and the articles “a” and “an” are generally to be con-
strued to comprise “one or more”. Furthermore, to the extent
that the terms “includes”, “having”, “has”, “with”, or variants
thereof are used, such terms are intended to be inclusive in a
manner similar to the term “comprising”.

What is claimed is:
1. A method for migrating data from a source data storage
device to a destination data storage device in a data storage
network, comprising:
identifying a first controller coupled to a data storage net-
work that owns a source data storage device and a second
controller coupled to the data storage network that owns
a destination data storage device;

determining one or more migration paths from the source
data storage device to the destination data storage device
using one or more ports of the first controller and one or
more ports of the second controller;

generating a transfer session comprising a plurality of data

slices that are to be transferred from the source data

storage device to the destination data storage device

along at least one of the one or more migration paths;

prior to beginning a transfer of the plurality of data slices

from the source data storage device to the destination

data storage device:

allocating a first portion of the plurality of data slices to
a first port of the first controller based upon a present
utilization of the first port; and

allocating a second portion of the plurality of data slices
to a second port of the first controller based upon a
present utilization of the second port; and

concurrently transferring a first data slice of the first por-

tion and a second data slice of the second portion from

the source data storage device to the destination data

storage device, the concurrently transferring compris-

ing:

transferring the first data slice across a first migration
path using the first port of the first controller and a first
port of the second controller; and

transferring the second data slice across a second migra-
tion path, concurrently during transfer of the first data
slice across the first migration path, using the second
port of the first controller and a second port of the
second controller.

2. The method of claim 1, comprising:

dynamically adjusting, in real-time, at least one of a num-

ber of data slices concurrently transferred or a slice size
of'a data slice of the plurality based upon at least one of
a utilization of the one or more ports of the first control-
ler or a utilization of the one or more ports of the second
controller.

15

20

25

30

35

40

45

50

55

60

65

26

3. The method of claim 1, comprising:

adjusting a first number of data slices associated with the
first portion to comprise a smaller number of data slices
than a second number of data slices associated with the
second portion based upon utilization of the first port
exceeding utilization of the second port.

4. The method of claim 1, comprising:

reducing a first slice size of the first data slice transferred

across the first migration path in relation to a second
slice size of the second data slice transferred across the
second migration path based upon utilization of the first
port exceeding utilization of the second port.

5. The method of claim 2, the dynamically adjusting com-
prising:

responsive to an identification of an under-utilized port,

increasing the slice size of the data slice.

6. The method of claim 2, the dynamically adjusting com-
prising:

responsive to an identification of an under-utilized port,

increasing the number of data slices concurrently trans-
ferred.

7. The method of claim 2, the dynamically adjusting com-
prising:

responsive to an identification of an over-utilized port,

decreasing the slice size of the data slice.

8. The method of claim 2, the dynamically adjusting com-
prising:

responsive to an identification of an over-utilized port,

decreasing the number of data slices concurrently trans-
ferred.

9. A system for migrating data from a source data storage
device to a destination data storage device in a data storage
network, comprising:

a migration component configured to:

identify a first controller coupled to a data storage net-
work that owns a source data storage device and a
second controller coupled to the data storage network
that owns a destination data storage device;
determine one or more migration paths from the source
data storage device to the destination data storage
device using one or more ports of the first controller
and one or more ports of the second controller;
generate a transfer session comprising a plurality of data
slices that are to be transferred from the source data
storage device to the destination data storage device
along at least one of the one or more migration paths;
prior to beginning a transfer of the plurality of data slices
from the source data storage device to the destination
data storage device:
allocate a first portion of the plurality of data slices to
a first port of the first controller based upon a
present utilization of the first port; and
allocate a second portion of the plurality of data slices
to a second port of the first controller based upon a
present utilization of the second port; and
concurrently transfer a first data slice of the first portion
and a second data slice of the second portion from the
source data storage device to the destination data stor-
age device, the concurrently transferring comprising:
transferring the first data slice across a first migration
path using the first port of the first controller and a
first port of the second controller; and
transferring the second data slice across a second
migration path, concurrently during transfer of the
first data slice across the first migration path, using
the second port of the first controller and a second
port of the second controller.

US 9,058,119 B1

27

10. The system of claim 9, the migration component con-
figured to:

dynamically adjust, in real-time, at least one of a number of

data slices concurrently transferred or a slice size of a
data slice of the plurality based upon at least one of a
utilization of the one or more ports of the first controller
or a utilization of the one or more ports of the second
controller.

11. The system of claim 9, the migration component con-
figured to:

adjust a first number of data slices associated with the first

portion to comprise a smaller number of data slices than
a second number of data slices associated with the sec-
ond portion based upon utilization of the first port
exceeding utilization of the second port.

12. The system of claim 9, the migration component con-
figured to:

reduce a first slice size of the first data slice transferred

across the first migration path in relation to a second
slice size of the second data slice transferred across the
second migration path based upon utilization of the first
port exceeding utilization of the second port.

13. The system of claim 9, the migration component con-
figured to:

detect a copy error associated with a data slice of the

plurality transferred from the source data storage device
to the destination data storage device.

14. The system of claim 10, the migration component
configured to:

responsive to an identification of an under-utilized port,

increase the slice size of the data slice.

15. The system of claim 10, the migration component
configured to:

responsive to an identification of an under-utilized port,

increase the number of data slices concurrently trans-
ferred.

16. The system of claim 10, the migration component
configured to:

responsive to an identification of an over-utilized port,

decrease the slice size of the data slice.

17. The system of claim 10, the migration component
configured to:

responsive to an identification of an over-utilized port,

decrease the number of data slices concurrently trans-
ferred.

18. The system of claim 13, the migration component
configured to:

compare source data, corresponding to the data slice from

the source data storage device, and destination data,
corresponding to the data slice from the destination data
storage device, to detect the copy error.
19. A method for migrating data from a source data storage
device to a destination data storage device in a data storage
network, comprising:
identifying a first controller coupled to a data storage net-
work that owns a source data storage device and a second
controller coupled to the data storage network that owns
a destination data storage device;

determining a first migration path and a second migration
path from the source data storage device to the destina-
tion data storage device, the first migration path using a

10

15

20

25

30

35

40

45

50

55

60

28
first port of the first controller and a first port of the
second controller, the second migration path using a
second port of the first controller and a second port of the
second controller;

prior to beginning a transfer of a plurality of data slices

from the source data storage device to the destination

data storage device:

allocating a first portion of the plurality of data slices to
a first port of the first controller based upon a present
utilization of the first port; and

allocating a second portion of the plurality of data slices
to a second port of the first controller based upon a
present utilization of the second port; and

concurrently transferring a first data slice of the first por-

tion and a second data slice of the second portion,

through the data storage network utilizing a data storage

network protocol, from the source data storage device to

the destination data storage device, the concurrently

transferring comprising:

transferring the first data slice across the first migration
path; and

transferring the second data slice across the second
migration path, concurrently during transfer of the
first data slice across the first migration path.

20. A system for migrating data from a source data storage
device to a destination data storage device in a data storage
network, comprising:

a migration component configured to:

identify a first controller coupled to a data storage net-
work that owns a source data storage device and a
second controller coupled to the data storage network
that owns a destination data storage device;
determine a first migration path and a second migration
path from the source data storage device to the desti-
nation data storage device, the first migration path
using a first port of the first controller and a first port
of the second controller, the second migration path
using a second port of the first controller and a second
port of the second controller;
prior to beginning a transfer of a plurality of data slices
from the source data storage device to the destination
data storage device:
allocate a first portion of the plurality of data slices to
a first port of the first controller based upon a
present utilization of the first port; and
allocate a second portion of the plurality of data slices
to a second port of the first controller based upon a
present utilization of the second port; and
concurrently transfer a first data slice of the first portion
and a second data slice of the second portion, through
the data storage network utilizing a data storage net-
work protocol, from the source data storage device to
the destination data storage device, the concurrently
transferring comprising:
transferring the first data slice across the first migra-
tion path; and
transferring the second data slice across the second
migration path, concurrently during transfer of the
first data slice across the first migration path.

#* #* #* #* #*

